Tabulation of cubic function fields via polynomial binary cubic forms

نویسندگان

  • Pieter Rozenhart
  • Michael J. Jacobson
  • Renate Scheidler
چکیده

We present a method for tabulating all cubic function fields over Fq(t) whose discriminant D has either odd degree or even degree and the leading coefficient of −3D is a non-square in Fq , up to a given bound B on deg(D). Our method is based on a generalization of Belabas’ method for tabulating cubic number fields. The main theoretical ingredient is a generalization of a theorem of Davenport and Heilbronn to cubic function fields, along with a reduction theory for binary cubic forms that provides an efficient way to compute equivalence classes of binary cubic forms. The algorithm requires O(B4qB) field operations as B → ∞. The algorithm, examples and numerical data for q = 5, 7, 11, 13 are included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Statement and Plan

My main research interest is number theory, in particular algebraic and computational number theory. Specifically, I am interested in computational aspects of number fields and function fields, in particular field tabulation and efficient computation of invariants associated with number fields and function fields. Many problems in this area have been explored extensively in the case of number f...

متن کامل

Reduction of Binary Cubic and Quartic Forms

A reduction theory is developed for binary forms (homogeneous polynomials) of degrees three and four with integer coefficients. The resulting coefficient bounds simplify and improve on those in the literature, particularly in the case of negative discriminant. Applications include systematic enumeration of cubic number fields, and 2-descent on elliptic curves defined over Q. Remarks are given c...

متن کامل

Computing quadratic function fields with high 3-rank via cubic field tabulation

We present recent results on the computation of quadratic function fields with high 3-rank. Using a generalization of a method of Belabas on cubic field tabulation and a theorem of Hasse, we compute quadratic function fields with 3-rank ≥ 1, of imaginary or unusual discriminant D, for a fixed |D| = q. We present numerical data for quadratic function fields over F5, F7, F11 and F13 with deg(D) ≤...

متن کامل

Tabulation of Cubic Function Fields with Imaginary and Unusual Hessian

We give a general method for tabulating all cubic function fields over Fq(t) whose discriminant D has odd degree, or even degree such that the leading coefficient of −3D is a non-square in Fq , up to a given bound on |D| = q. The main theoretical ingredient is a generalization of a theorem of Davenport and Heilbronn to cubic function fields. We present numerical data for cubic function fields o...

متن کامل

Orbital L-functions for the Space of Binary Cubic Forms

We introduce the notion of orbital L-functions for the space of binary cubic forms and investigate their analytic properties. We study their functional equations and residue formulas in some detail. Aside from their intrinsic interest, the results from this paper are used to prove the existence of secondary terms in counting functions for cubic fields. This is worked out in a companion paper.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2012